Posts by Collection

portfolio

  • Portfolio item number 1
  • Portfolio item number 2
  • publications

  • FLAIRS
    Investigating Potential Factors Associated with Gender Discrimination in Collaborative Recommender Systems
    Masoud Mansoury, Himan Abdollahpouri, Jessie Smith, Arman Dehpanah, Mykola Pechenizkiy, Bamshad Mobasher
    In the 33nd International Florida Artificial Intelligence Research Society Conference in Cooperation with AAAI, 2020
  • UMAP
    FairMatch: A Graph-based Approach for Improving Aggregate Diversity in Recommender Systems
    Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, Robin Burke
    In the 28th Conference on User Modeling, Adaptation and Personalization, 2020
  • KDD Workshop
    Multi-sided Exposure Bias in Recommendation
    Himan Abdollahpouri, Masoud Mansoury
    In Workshop on Industrial Recommendation Systems in Conjuction with ACM KDD, 2020
  • CIKM
    Feedback Loop and Bias Amplification in Recommender Systems
    Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, Robin Burke
    In the 29th ACM International Conference on Information and Knowledge Management, 2020
  • RecSys
    Fairness-aware Recommendation with librec-auto
    Nasim Sonboli, Robin Burke, Zijun Liu, Masoud Mansoury
    In the Proceedings of the 14th ACM Conference on Recommender Systems, 2020
  • RecSys
    The Connection between Popularity Bias, Calibration, and Fairness in Recommendation
    Himan Abdollahpouri, Masoud Mansoury, Robin Burke, Bamshad Mobasher
    In the Proceedings of the 14th ACM Conference on Recommender Systems, 2020
  • WSDM
    Fairness-aware Recommendation in Multi-sided Platforms
    Masoud Mansoury
    In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, 2021
  • TIST
    Flatter is better: Percentile Transformations for Recommender Systems
    Masoud Mansoury, Robin Burke, Bamshad Mobasher
    ACM Transactions on Intelligent Systems and Technology, 12 no. 2, 2021
  • UMAP
    Beyond Algorithmic Fairness in Recommender Systems
    Mehdi Elahi, Himan Abdollahpouri, Masoud Mansoury, Helma Torkamaan
    In Adjunct proceedings of the 29th ACM conference on user modeling, adaptation and personalization, 2021
  • UMAP
    User-centered evaluation of popularity bias in recommender systems
    Himan Abdollahpouri, Masoud Mansoury, Robin Burke, Bamshad Mobasher, Edward Malthouse
    In Proceedings of the 29th ACM conference on user modeling, adaptation and personalization, 2021
  • CIKM
    Librec-auto: A tool for recommender systems experimentation
    Nasim Sonboli, Masoud Mansoury, Ziyue Guo, Shreyas Kadekodi, Weiwen Liu, Zijun Liu, Andrew Schwartz, Robin Burke
    In the 30th ACM International Conference on Information and Knowledge Management, 2021
  • TOIS
    A Graph-based Approach for Mitigating Multi-sided Exposure Bias in Recommender Systems
    Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, Robin Burke
    ACM Transactions on Information Systems, 40 no. 2, 2021
  • RecSys Workshop
    Exposure-Aware Recommendation using Contextual Bandits
    Masoud Mansoury, Bamshad Mobasher, Herke van Hoof
    In 5th FAccTRec Workshop on Responsible Recommendation in conjunction with ACM RecSys 2022
  • RecSys Workshop
    Career Path Recommendations for Long-term Income Maximization: A Reinforcement Learning Approach
    Spyros Avlonitis, Dor Lavi, Masoud Mansoury, David Graus
    In Workshop on Recommender Systems for Human Resources in conjunction with ACM RecSys 2023
  • RecSys Workshop
    Fairness of Exposure in Dynamic Recommendation
    Masoud Mansoury, Bamshad Mobasher
    In CONSEQUENCE Workshop on Causality, Counterfactuals, and Sequential Decision-Making in conjunction with ACM RecSys 2023
  • CIKM
    Predictive Uncertainty-based Bias Mitigation in Ranking
    Maria Heuss, Daniel Cohen, Masoud Mansoury, Maarten de Rijke, Carsten Eickhoff
    In the 32nd ACM International Conference on Information and Knowledge Management, 2023
  • BNAIC
    Potential Factors Leading to Popularity Unfairness in Recommender Systems: A User-Centered Analysis
    Masoud Mansoury, Finn Duijvestijn, Imane Mourabet
    In BNAIC Joint International Scientific Conference on AI and Machine Learning, 2023
  • ECIR
    Measuring Item Fairness in Next Basket Recommendation: A Reproducibility Study
    Yuanna Liu, Ming Li, Mozhdeh Ariannezhad, Masoud Mansoury, Mohammad Aliannejadi, Maarten de Rijke
    In the 46th European Conference on Information Retrieval, 2024
  • UMAP
    Beyond Static Calibration: The Impact of User Preference Dynamics on Calibrated Recommendation
    Kun Lin, Masoud Mansoury, Farzad Eskandanian, Milad Sabouri, Bamshad Mobasher
    The 32nd ACM Conference on User Modeling, Adaptation and Personalization (LBR), 2024
  • SIGIR
    Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems (Best Paper Nominee)
    Jin Huang, Harrie Oosterhuis, Masoud Mansoury, Herke van Hoof, Maarten de Rijke
    In the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2024
  • RecSys Workshop
    Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization
    Juno Prent, Masoud Mansoury
    In International Workshop on Recommender Systems for Sustainability and Social Good in conjunction with ACM RecSys 2024
  • CIKM
    Mitigating Exposure Bias in Online Learning to Rank Recommendation: A Novel Reward Model for Cascading Bandits
    Masoud Mansoury, Bamshad Mobasher, Herke van Hoof
    In the 33rd ACM International Conference on Information and Knowledge Management, 2024
  • TORS
    Towards Carbon Footprint-Aware Recommender Systems for Greener Item Recommendation
    Raoul Kalisvaart, Masoud Mansoury, Alan Hanjalic, Elvin Isufi
    In ACM Transactions on Recommender Systems, 2025
  • UMAP Workshop
    Towards Explainable Temporal User Profiling with LLMs
    Milad Sabouri, Masoud Mansoury, Kun Lin, Bamshad Mobasher
    In Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization, 2025
  • RecSys
    A Reproducibility Study of Product-side Fairness in Bundle Recommendation
    Huy Son Nguyen, Yuanna Liu, Masoud Mansoury, Mohammad Alian Nejadi, Alan Hanjalic, Maarten de Rijke
    In Proceedings of the 19th ACM Conference on Recommender Systems, 2025
  • RecSys
    Mitigating Popularity Bias in Counterfactual Explanations using Large Language Models
    Arjan Hasami, Masoud Mansoury
    In Proceedings of the 19th ACM Conference on Recommender Systems, 2025
  • RecSys
    Opening the Black Box: Interpretable Remedies for Popularity Bias in Recommender Systems
    Parviz Ahmadov, Masoud Mansoury
    In Proceedings of the 19th ACM Conference on Recommender Systems, 2025
  • RecSys Workshop
    Using LLMs to Capture Users’ Temporal Context for Recommendation
    Milad Sabouri, Masoud Mansoury, Kun Lin, Bamshad Mobasher
    In Workshop on Context-Aware Recommender Systems in conjunction with ACM RecSys 2025
  • ECAI
    RaMen: Multi-Strategy Multi-Modal Learning for Bundle Construction
    Huy-Son Nguyen, Quang-Huy Nguyen, Duc-Hoang Pham, Duc-Trong Le, Hoang-Quynh Le, Padipat Sitkrongwong, Atsuhiro Takasu, Masoud Mansoury
    In Proceedings of the 28th European Conference on Artificial Intelligence (ECAI), 2025
  • talks

  • Talk 1 on Relevant Topic in Your Field
    UC San Francisco, Department of Testing
  • Tutorial 1 on Relevant Topic in Your Field
    UC-Berkeley Institute for Testing Science
  • Talk 2 on Relevant Topic in Your Field
    London School of Testing
  • Conference Proceeding talk 3 on Relevant Topic in Your Field
    Testing Institute of America 2014 Annual Conference
  • teaching

  • Teaching experience 1
    University 1, Department
  • Teaching experience 2
    University 1, Department